A Best Approximation Property of the Moving Finite Element Method
نویسندگان
چکیده
منابع مشابه
A Best Approximation Property of the Moving Finite Element Method
The Moving Finite Element method for the solution of time-dependent partial dierential equations is a numerical solution scheme which allows the automatic adaption of the nite element approximation space with time. An analysis of how this method models the steady solutions of a general class of parabolic linear source equations is presented. It is shown that the steady solutions of the Moving F...
متن کاملA Best Approximation Property of the Moving Finite ElementMethodP
The Moving Finite Element method for the solution of time-dependent partial diierential equations is a numerical solution scheme which allows the automatic adaption of the nite element approximation space with time. An analysis of how this method models the steady solutions of a general class of parabolic linear source equations is presented. It is shown that under certain conditions the steady...
متن کاملbuckling of viscoelastic composite plates using the finite strip method
در سال های اخیر، تقاضای استفاده از تئوری خطی ویسکوالاستیسیته بیشتر شده است. با افزایش استفاده از کامپوزیت های پیشرفته در صنایع هوایی و همچنین استفاده روزافزون از مواد پلیمری، اهمیت روش های دقیق طراحی و تحلیل چنین ساختارهایی بیشتر شده است. این مواد جدید از خودشان رفتارهای مکانیکی ارائه می دهند که با تئوری های الاستیسیته و ویسکوزیته، نمی توان آن ها را توصیف کرد. این مواد، خواص ویسکوالاستیک دارند....
Fuzzy Best Simultaneous Approximation of a Finite Numbers of Functions
Fuzzy best simultaneous approximation of a finite number of functions is considered. For this purpose, a fuzzy norm on $Cleft (X, Y right )$ and its fuzzy dual space and also the set of subgradients of a fuzzy norm are introduced. Necessary case of a proved theorem about characterization of simultaneous approximation will be extended to the fuzzy case.
متن کاملFinite element quasi-interpolation and best approximation
This paper introduces a quasi-interpolation operator for scalarand vector-valued finite element spaces constructed on affine, shape-regular meshes with some continuity across mesh interfaces. This operator gives optimal estimates of the best approximation error in any Lp-norm assuming regularity in the fractional Sobolev spaces W r,p, where p ∈ [1,∞] and the smoothness index r can be arbitraril...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: SIAM Journal on Numerical Analysis
سال: 1996
ISSN: 0036-1429,1095-7170
DOI: 10.1137/s0036142993255435